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This research presents an optimization technique for route planning using simulated ant agents

for dynamic online route planning and optimization of the route. It addresses the issues involved

during route planning in dynamic and unknown environments cluttered with obstacles and
objects. A simulated ant agent system (SAAS) is proposed using modi¯ed ant colony optim-

ization algorithm for dealing with online route planning. It is compared with evolutionary

technique on randomly generated environments, obstacle ratio, grid sizes, and complex

environments. The evolutionary technique performs well in simple and less cluttered environ-
ments while its performance degrades with large and complex environments. The SAAS gen-

erates and optimizes routes in complex and large environments with constraints. The traditional

route optimization techniques focus on good solutions only and do not exploit the solution space

completely. The SAAS is shown to be an e±cient technique for providing safe, short, and
feasible routes under dynamic constraints and its e±ciency has been tested in a mine ¯eld

simulation with di®erent environment con¯gurations and is capable of tracking the moving goal

and performs equally well as compared to moving target search algorithm.
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1. Introduction

A swarm is de¯ned as a set of nature-inspired mobile agents that collectively carry

out a distributed problem solving. These mobile agents can achieve higher objectives

when working in collaborative manner. They are able to communicate with each

other directly or indirectly by acting on their local environment. Swarm intelligence
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is the new area in arti¯cial intelligence, inspired from swarm behavior. Swarm

intelligence1 is the property of a system whereby the collective behaviors of unso-

phisticated agents interacting locally with their environment cause coherent func-

tional global patterns to emerge.

Ant colony optimization1 and particle swarm optimization1 are two major tech-

niques in the family of swarm intelligence. In ACO, ants are able to ¯nd their way to

and from food, and the method by which they do it is modeled in a new approach

called the ant colony optimization algorithm. It is a population based approach for

optimization problems. A number of arti¯cial \ants" construct solutions to the

problem at hand by the repeated selection of parts from a prede¯ned set of solution

components. The only communication between ants is called stigmergy,2 i.e., indirect

communication using pheromone. These ants select components probabilistically

biased by heuristic information (a problem speci¯c heuristic measure of a com-

ponent's utility) and pheromone information, and directly associated with the sol-

ution components. To simulate the real-world process by which ants ¯nd the shortest

path to a food source, electronic ants deposit pheromone on components in pro-

portion to the quality of the solutions that contain them.

The route planning is an important problem in arti¯cial intelligence research and

has been addressed over the years and still considered to be a challenging area

and requires e±cient and robust technique to solve.3�6 This paper presents simulated

ant agents with route planning capabilities. The physical existence of simulated ant

agents is conceived in the form of a simulation that runs on computing devices. To

say that they are autonomous computational entities implies that to some extent

they have control over their behavior and can act without the intervention of other

systems. These ant agents are goal driven and can also execute tasks in order to

complete design objectives. The ant agents use the modi¯ed ant algorithm for ¯nding

the optimum route between the start and the goal.

2. Problem Formulation

The route planning and optimization of routes have been considered as NP complete

problem.7 Non-deterministic polynomial time complete is a complexity class of

problems with two properties, i.e., any given solution to the problem can be veri¯ed

quickly and if the problem can be solved in polynomial time then every problem in

NP class can be solved. Such problems are usually tackled by approximation

algorithms7 and meta-heuristic approach is one of them.

An o²ine planner generates the complete plan before the task is performed.3 The

traditional o²ine planners often assume that the environment is completely known

and they try to ¯nd the plan based on the shortest distance criteria. They cannot

handle dynamic environments and are limited to their initial plan. When the

environment remains constant throughout the planning process, the route planning

is called static o²ine route planning. A*,8 RTA*10�13,29 are the algorithms that
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belong to this family. The planner is provided with the complete picture of the

environment along with the starting and destination points. The destination point

remains constant throughout the planning process. Static environments are those

environments which, once discovered completely, do not change with respect to the

environment components. The static environment can be known, partially known9 or

unknown and requires a di®erent approach for the each category.

On the other hand, an online planner generates a partial plan during the

execution of the task. Online planners are mostly used for dynamic route planning.

When the state space changes during the planning phase, the route planning is called

dynamic online route planning.3 The online planning approach is based on the

assumption that the agents would be dealing with dynamic environment, and it

would neither be feasible nor practical to re-plan the complete route. The online

planners are mostly heuristic in nature as the problem instance reveals incrementally

and is often prone to slow response time. They require a sophisticated algorithmic

approach to ¯nd the shortest route.

There are di®erent approaches for online route planning. Some of the online

planners generate a route o²ine initially and then modify it during task execution.

Some do planning gradually with task execution. While there are some planners that

always hold a backup plan as prediction and when the environment changes or

previous plan fails, they start executing the backup plan. The unknown and dynamic

environments are most di±cult to deal. The tracking of the moving target by ACO

can be considered as a dynamic online planning problem. There are a number of

constraints to be considered during planning phase. The obstacle avoidance and

¯nding the shortest route for each changing goal are the complex tasks to deal with.

3. Ant Colony Optimization

Ant colony optimization1 is a swarm based algorithm that has been successfully used

for optimization problems. Ants are tiny insects that ¯nd shortest routes from the

nest to the food sources by using collective swarm behavior. The ant colony algor-

ithm was presented by Marco Dorigo et al.1 in 1996 and was found to be a robust

optimization algorithm for a number of problems. Each ant constructs a complete

solution and evaluates the solution for ¯tness measure. The communication between

ants is achieved by the concept called as stigmergy,1 i.e., each ant deposits a

pheromone during traversing and the ants that follow them use the pheromone trace

as the ¯tness of the path and selects the path with maximum pheromone deposit.

There is a method of pheromone update across each path. The pheromone decay can

be implemented by using di®erent techniques.

The ants deposit pheromone at a constant rate and the path with the maximum

accumulation of pheromone will be the optimum path. The shortest path has the

maximum pheromone deposit as compared to the larger path. The algorithm is

initialized with a speci¯c population size and iterations are pre-de¯ned. The ants
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traverse di®erent paths and update the pheromone level. The selection of the next

node for each ant \k" is selected by using the state transition rule,1 as shown in

Eq. (1). The allowed k is the set of available states from which the kth ant can

choose.

p k
ijðtÞ ¼

½� ij �� � ½�ij ��
�k "allowed k½� ij �� � ½�ij ��

: ð1Þ

It acts like a probabilistic function for the node selection. It uses distance and the

pheromone level in deciding the next node for ant. The alpha and beta parameter are

used to balance the contribution of pheromone level and the heuristic function. The

Manhattan distance and Euclidean distance have been used and compared in exper-

imentations. Here � ij used in Eq. (1) is the amount of pheromone level on the edge (ij),

�ij ¼ 1=dij is a heuristic value, and � and � are constants that determine the relative

in°uence of the pheromone value and that of the heuristic value on the decision of the

ant. For some constant mbest � m, the mbest ants having found the best solutions

are allowed to update the pheromone matrix. Every ant that is allowed to update

adds pheromone to every edge (ij) which is on its tour. The amount of pheromone

added to such an edge (ij) is Q=L where L is the length of the tour that was found

and Q is a constant as shown in Eq. (2).

� ij ¼ � ij þ
Q

L
: ð2Þ

But before that is done some of the old pheromone is evaporated by multiplying it

with a factor � < 1 as shown inEq. (3). The previous pheromone level should not have a

too strong in°uence on the future decision. A bad choice nodemay have been selected as

a component of a good solution, and a high pheromone value may have been deposited

on the link. The solution may have been even better, if the node had been replaced

by another node. But now, due to high pheromone value it will continue to have a

strong probability of selection for a considerable length of time (until pheromone values

on nodes in competition become much higher). To shorten that time of wrong

in°uence, the pheromone values are decayed. This implies that a high level of phero-

moneswill be associated onlywith links that continuously get selected in good solutions.

� ij ¼ � � � ij : ð3Þ
The algorithm stops when some stopping criterion is met, e.g., a certain number of

generations have been done or the best found solution has not changed for several

generations. Ants are able to ¯nd their way to and from food, and this technique is

modeled in a new approach called the ant algorithm.

4. Literature Survey

Swarm intelligence has been used for optimization problems like the traveling

salesman problem,14 job-shop scheduling,15 clustering,16 constraint satisfaction
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problems,17 and planning,18 etc. Mei et al.6 used the combination of arti¯cial po-

tential ¯eld (APF)19 with ACO for path planning of a robot in a dynamic environ-

ment. This paper presents the concept of local and global path planning. The

pheromone was used to prevent the arti¯cial potential ¯eld from getting local

minimum and handles the real-time demand. The main drawback of APF is the

convergence to local minimum. It integrates local and global planners to cater the

dynamic environments. ACO is used for global route planning based on static en-

vironment information and then APF is used to program the local route. Instead of

using the same level of pheromone ¯eld initially, they use di®erent pheromone ¯elds

based on the distance of that current point from the obstacles. This reduces the

convergence time for the ACO. They also use the information regarding obstacle-

avoidance and smoothness of the route. This technique uses the obstacle-avoidance

in objective function along with smoothness but lacks the information of dynamic

obstacles. It opens the feasibility of collision between robot and moving obstacles.

For real-time dynamic environments, this method needs to be improved. It performs

better then the evolutionary method.

Another approach in this direction is the use of reinforcement learning along with

ACO algorithm for obstacle avoidance and route planning for mobile robots pre-

sented by Vien et al.5 This paper presents path planning based on the Ant-Q

algorithm for static and dynamic obstacle avoidance. It is based on the metaphor of

ant colonies. They use three methods for delayed reinforcement updating. The Ant-Q

algorithm performs better than the genetic algorithm with a higher convergence rate.

It is inspired from Q-learning and ant behaviors. It requires a good cost function for

the moving path along with an e®ective Ant-Q value method. The cost function

helps in choosing collision-free and shortest routes while the updating method helps

to ¯nd optimum solution with faster convergence. It uses the pseudo-random pro-

portional action choice rule as state transition rule along with three categories for

updating, i.e., local updating, mixture updating and global updating for optimum

solutions. They compared the results with the ant colony system and genetic

algorithm. They use limited variable environments in their experiments and require

more diverse and complex environments. The paths generated are not so smooth and

require testing in di®erent environment representations.

Tambouratzis et al.24 presents a progressive optimization of organized colonies of

ants (POOCA) algorithm for robot navigation. It focuses on route planning in an

unknown environment cluttered with obstacles. With restricted number of ants in

the colony, the path convergence is achieved faster. The POOCA uses a combination

of co-operation inherent in ACO along with the spread of activation around the

winner node during training of the self organizing maps (SOM). The paths are

smooth as compared to the Ant-Q algorithm and they cater to dynamic environ-

ments as well. The obstacles appear, disappear or move and similarly goal changes its

location as well. The environment has been discretized in time and space, i.e., ant

motion is performed in terms of time steps and synchronously for all the ants while
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the environment is represented as rectangular grid. The location of the end point

remains unknown until discovered by the ¯rst ant to be reached at the end point. It

employed a combination of the o²ine and online pheromone updating. A concept of

pheromone leakage has been given to the neighboring nodes and incorporates the

algorithm. It reduces with each subsequent trip of the ant and is proportional to the

number of path cells. In this technique, the ant completes a su±cient number of

round trips and it depends on the size and complexity of the environment.

Qiang et al.4 presents a global path planning approach based on the ACO

algorithm. They present the concept of the neighboring area and smell area as

modi¯cation in the ACO. The path has been divided into three segments, i.e., path

between the nest and initial position of each ant, path between the initial position of

each ant and the position that ants enter the smell area and ¯nally the path between

the position that ants enter the smell area and the food. Similarly, the concept of the

neighboring area has been introduced for directing the ants towards the goal while

avoiding obstacles. It also helps in ¯nding the shortest route for the ants. This

technique is useful for the optimization of global path but lacks the capability for

dealing with moving obstacles and dynamic environments.

5. Route Planning

Route planning can be categorized into online and o²ine based on the methodology

for environment exploration. In online route planning, the agent explores the

environment as it moves around while in o²ine route planning, the agent has already

got the environment information beforehand. Di®erent techniques have been

explored for route planning such as neural networks,25 genetic algorithm,26 fuzzy

logic,27 arti¯cial potential ¯eld,19,20 frontier-based exploration,21�23 etc. It is a dif-

¯cult job to ¯nd a safe, strategic route in a terrain with obstacles and optimization

constraints. Some papers use graph based methods8 and some use potential ¯elds19

for space representation. This paper focuses on grid-based environment represen-

tation. The details for route planning strategies are discussed below.

5.1. O®-line route planning

O®-line route planning3 uses a prioritized directional approach to ¯nd the shortest

path between two given points. The start and the goal (destination) points are

provided beforehand on the map. The agents then use an exhaustive search to ¯nd

the feasible paths. This technique works well with static environments. Static

environments are those environments which, once discovered completely, do not

change with respect to the obstacles. But if this approach is applied on the

environment which is dynamic, and the path which initially calculated changes, the

agent has to re-compute everything from scratch with respect to the path explora-

tion algorithm. For example, if the agent was to move from point A to point B, if

462 K. Zafar et al.



somewhere in between, the path dynamics are changed from that point onwards,

the agent will have to re-compute everything from that mid-point to the goal point,

say B. When the environment is completely known beforehand, the route planning is

called o²ine.

5.2. On-line route planning

In on-line route planning,3 agents can recon¯gure the planning phase and re-evaluate

the route from that particular point to the goal point. Di®erent techniques have been

used for online planning specially the evolutionary algorithm. This approach was

based on the assumption that the agents would be dealing with dynamic environ-

ment instead of static, and it would neither be feasible nor practical to re-compute

the whole path just because there has been a little change in the environment. This

approach successfully mutates an infeasible path to ¯nd an alternative route. Where

such a mutation is not possible, it simply uses the method of cross over to link up a

point on our current path, to a secondary (alternative) path, without re-computing

the whole scenario.

Initially, it computes a few random paths from point A to point B, and then

applies the processes of crossover and mutation on di®erent paths, to generate a more

feasible, practical, and optimal path. The process of crossover simply tries to join two

(or more) di®erent paths, in order to ¯nd a better solution. The mutation part,

simply introduces slight changes in the route in order to ¯nd a better turn.

5.3. Ant agent based route planning

The simulated ant agents are used for online route planning. At the start of simu-

lation, the ant agents traverse the grid area and try to ¯nd the goal node. Once the

goal node has been discovered, the pheromone level of that particular path is

updated. The ant agent selects the next node probabilistically by using a roulette

wheel method and the ant agent traverses a path and updates the pheromone level

for each of the solution found. Each ant agent constructs a complete solution and an

evaluation function evaluates each generated path continuously. The algorithm runs

till the desired number of iterations completed.

Ant agents use the phenomenon of stigmergy for indirect communication between

di®erent ant agents. After the selection of the number of ants and number of iter-

ations, the user loads the map with a local and global view. Four di®erent map sizes

have been used for the simulation, i.e., 20� 20; 40� 40; 60� 60, and 80� 80. Each

map has a di®erent number of mines, obstacles, starting state and goal state par-

ameters. After the selection and loading of the map, the pheromone deposit is

initialized randomly to a small value between 0.01 to 0.09. The heuristic function

consists of the pheromone level, distance from the start state to the goal state,

clearness and smoothness of the route.
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6. Simulated Ant Agent System

Ants are tiny insects capable of ¯nding the shortest routes from their nest to the food

source. These ants heuristically ¯nd the shortest route and save time to get the food.

Ant colony optimization1 is the technique inspired by these tiny ants for optimiz-

ation problems like the traveling salesman problem, job scheduling, network routing,

and classi¯cation. Ant colony optimization has been applied to solve combinatorial

complex problems.

This research presents a simulated ant agent system (SAAS) for solving the route

planning problem both in static as well as in dynamic environments. SAAS has been

applied for online planning in dynamic environments with di®erent environmental

con¯gurations and constraints. Ant agents have been used in SAAS and they are

capable of traversing the environment based on the ACO algorithm technique and

collectively ¯nd the shortest route from the initial state to the goal state by using

indirect communication.

Ant agents are capable of generating probabilistic solutions using a roulette wheel

method. They have no prior knowledge of the environment and it traverses the

environment for goal state. Once the goal state is discovered, each ant agent con-

structs a single solution. The solution is evaluated and its information is conveyed to

other ant agents by using stigmergy. The stigmergy is a technique of indirect com-

munication used by ant agents. Ant agents update the solution path by updating the

pheromone level and it acts as a communication for other ant agents. In the initial

state space search, ant agents construct bad solutions but as these ant agents reach

the goal state, they update the pheromone levels for the solution path. The next ant

agent is guided by the indirect communication of this route information and prob-

ability of selecting these routes by the ant agent increases. The parameters like alpha

and beta control the convergence process. The alpha parameter is related with the

pheromone level and beta is related with the heuristic value, i.e., Manhattan distance

or Euclidean distance. The di®erent ranges for these parameters have been tested

and used in the simulation. The pheromone level and heuristic function are two

components that guide the ant agents towards the goal state.

The SAAS has been applied for static route planning using a modi¯ed ACO

algorithm. The goal state remains ¯xed and environment is static and unknown for

ant agents. After loading of the map with the speci¯c environment, the map is

prepared for SAAS. The pheromone is initialized randomly to a small value from

0.01 to 0.09. The start state and the goal state are selected and SAAS starts the

execution. The ant agent starts exploring the environment randomly and

the selection of the next node takes place by using the probability of the selection

formula given in Eq. (1). The formula consists of the pheromone level as well as

the heuristic function for calculating probabilities for each prospective node. The

heuristic function used for static environments is the Manhattan distance.8 The

Manhattan distance is the number of vertical and horizontal moves to reach the goal
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state. Before taking the step, each ant agent calculates the probability for each

adjacent node and selects the next node by using the roulette wheel. The ant agent

continuously explores the static environment for goal state. As soon as it ¯nds the

goal state, the pheromone at the resultant path is updated by using the updating

equation. Finding the solution in a dynamic environment is di±cult when multiple

constraints are enforced. The SAAS has been applied for the dynamic environment in

the same way as the moving target search (MTS).11,29,30 The simulated ant agent is

capable of locating the moving target by using the modi¯ed ACO. Again the ant

agent has been used for the handling of moving targets. There are two options for

incorporating the moving target. In the ¯rst option, we select the number of times we

want to change the target during each run. While in the second option the ratio of

change of moving target generates randomly. After loading and preparation of the

map, an option is selected for incorporating the moving target. During the execution

of the task, goal changes and the ant agent recon¯gures the planning phase for the

new goal state. SAAS has been tested for di®erent map sizes and con¯gurations.

7. Experimentation

The experimentation has been divided into two phases, i.e., static and dynamic

environment. For static environment, the goal state remains static. We use four

di®erent size environments, i.e., 20� 20; 40� 40; 60� 60, and 80� 80 grid maps as

shown in Fig. 1.

Each grid map has di®erent percentage of obstacles and mines. The starting and

the ending points have been ¯xed for experiments. The number of ants is also ¯xed

for each experiment. After loading of the map, we need to set the parameters for

experiment. There is an option for enabling dynamic environment by randomly

changing the goal during the online planning phase. We provide the number of such

changing states for each run of the simulation and goal changes randomly during

planning. After loading the map, we need to enter the number of iterations, number of

ants, and randomly changing goals for incorporating dynamism in experimentation.

The ¯rst experiment deals with static environment and we use 50 iterations, 1 ant

and 30 experimental runs. The results are shown in Tables 1�4. Four di®erent maps

have been used and each with di®erent obstacle ratio and grid size. A high obstacle

ratio and randomly generated maps have been used to simulate complex environ-

ments. The main parameters for the simulation are the alpha and beta value that

primarily controls the convergence of the optimum solution. The alpha value rep-

resents the contribution of the pheromone level and beta value represents the con-

tribution of heuristic function. The SAAS has been tested by using the Euclidean

distance and results have been compared with the results from Manhattan distance.

We use di®erent values for alpha and beta for each of the maps. The values for alpha

and beta have been varied from 0.1 to 1.0 for each experiment and results have been

recorded for comparison. There is a module for optimization of the path by repairing
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(4) 80 x 80 

(2) 40 x 40 (1) 20 x 20 

(3) 60 x 60 

Fig. 1. Grid maps of di®erent sizes, obstacle ratio, and complexity.

Table 1. Map 20� 20 results with di®erent values for alpha and beta using 50 iterations and 30 runs for

each experiment.

Beta

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 31.33 30.77 29.90 30.23 29.23 30.03 28.17 28.30 28.00 27.53

0.2 31.60 31.07 30.87 30.43 30.13 29.70 28.90 28.40 27.97 27.50

0.3 31.73 32.17 29.43 30.73 29.67 31.07 29.47 30.43 29.53 29.83

0.4 34.23 32.77 32.33 31.23 32.33 32.53 29.87 30.67 30.30 30.13
0.5 32.67 36.10 33.13 32.03 34.13 31.97 32.53 31.37 32.10 31.40

0.6 35.77 36.10 36.70 34.40 33.57 34.00 34.93 33.23 32.73 32.53

0.7 36.73 37.07 33.70 35.50 36.43 35.33 34.27 34.20 34.60 31.90

0.8 38.73 36.50 36.83 37.80 36.70 34.57 35.43 33.67 34.67 36.47
0.9 39.10 38.97 38.40 39.17 35.53 37.17 35.23 34.80 35.00 34.80

1 40.10 38.47 36.93 40.50 36.53 37.50 37.43 36.90 36.10 36.90

Min 31.33 30.77 29.43 30.23 29.23 29.70 28.17 28.30 27.97 27.50

Median 35.00 36.10 33.42 33.22 33.85 33.27 33.40 32.30 32.42 31.65

Average 35.20 35.00 33.82 34.20 33.43 33.39 32.62 32.20 32.10 31.90

Max 40.10 38.97 38.40 40.50 36.70 37.50 37.43 36.90 36.10 36.90
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the v-edges of the path. After the generation of the path, the optimization module

measures the distance of the generated route and compares the distance after

repairing the path. If the distance remains the same as of the generated path, then

the system regenerates the new optimized path. The simulated ant agent system is

able to track the moving target similar to the online planning and takes care of the

dynamic environment. During each run, the goal changes randomly and it behaves

like a moving target search. Whenever the goal changes the SAAS is capable of

tracking it and again ¯nds the shortest route to the new goal. The experimental setup

Table 2. Map 40 × 40 results with di®erent values for alpha and beta using 50 iterations and 30 runs for

each experiment.

Beta

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 60.37 58.38 60.20 56.80 55.73 56.70 55.43 56.03 57.23 54.57

0.2 65.27 62.87 63.57 64.29 63.78 62.57 64.23 62.67 61.90 61.83
0.3 73.67 69.13 70.27 67.20 73.53 68.00 63.67 67.70 64.13 63.37

0.4 75.50 70.80 73.47 74.80 70.50 71.83 70.84 74.17 69.37 70.33

0.5 79.93 74.10 73.27 75.83 69.54 73.22 71.60 74.72 72.39 71.66

0.6 84.37 83.60 79.36 81.42 78.34 75.63 76.82 75.23 73.40 74.33
0.7 80.43 82.45 78.49 75.24 77.49 73.67 75.03 73.67 76.28 74.35

0.8 80.13 84.56 79.30 81.68 75.39 78.27 75.35 76.39 72.78 73.56

0.9 92.97 93.44 86.40 88.32 84.90 87.31 83.22 85.78 82.92 80.31
1 96.37 96.88 94.54 93.76 94.03 88.32 87.21 85.72 84.29 84.56

Min 60.37 58.37 60.20 56.80 55.73 56.70 55.43 56.03 57.23 54.57

Median 80.03 78.28 75.98 75.54 74.46 73.45 73.32 74.45 72.59 72.61
Average 78.90 77.62 75.89 75.93 74.32 73.55 72.34 73.21 71.47 70.89

Max 96.37 96.88 94.54 93.76 94.03 88.32 87.21 85.78 84.29 84.56

Table 3. Map 60� 60 results with di®erent values for alpha and beta using 50 iterations and 30 runs for

each experiment.

Beta

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 275.50 272.17 270.63 276.93 254.17 247.50 240.40 207.43 194.67 196.93

0.2 286.45 292.49 274.56 271.50 264.89 266.35 258.64 235.45 210.58 226.46

0.3 289.56 282.60 246.31 281.43 274.54 267.42 264.88 225.54 233.50 215.63

0.4 284.53 294.50 274.68 271.40 265.66 273.53 258.72 235.50 188.62 187.36
0.5 262.50 276.57 271.89 265.43 257.89 244.65 239.65 264.77 231.44 216.45

0.6 283.67 275.54 271.69 254.60 255.33 271.30 235.50 243.61 185.62 192.50

0.7 296.67 293.65 277.49 271.33 266.40 246.76 275.42 247.68 231.54 223.43

0.8 276.50 272.54 284.22 256.43 254.51 261.60 253.87 262.26 266.49 224.48
0.9 354.65 287.56 293.65 277.54 271.64 254.50 243.42 216.68 225.53 218.49

1 342.43 273.52 284.99 267.72 289.56 264.66 241.55 224.58 223.47 205.65

Min 262.50 272.17 246.31 254.60 254.17 244.65 235.50 207.43 185.62 187.36

Median 285.49 279.59 274.62 271.37 265.28 263.13 248.65 235.48 224.50 216.04

Average 295.25 282.11 275.01 269.43 265.46 259.83 251.21 236.35 219.15 210.74

Max 354.65 294.50 293.65 281.43 289.56 273.53 275.42 264.77 266.49 226.45
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provides two options for changing the goal. Option 1 takes a number to change the

goal during the run randomly, while option 2 changes the goal according to a certain

percentage of change. The experiments have been performed by changing the goal

3 times and by using option 1 ¯rst, the number of generated paths automatically

generated in a drop down menu list. If the user selects to change the goal 4 times, it

will have 4 paths and we can draw and optimize any of the 4 available paths. The

¯gures below show the di®erent map considerations used in the experiments.

8. Results

The experiments have been conducted separately for static goal and for the dynamic

goal environment. The starting point and the goal point remains constant

throughout each run. Each run consists of 50 iterations with a single ant. The maps

have been generated randomly with di®erent obstacle ratios and placement of mines.

The environments are from simple to complex.

The SAAS has been used to ¯nd the optimum route between the starting point

and the goal point. The probability of selection for the next node depends on the

values of alpha and beta. The alpha value represents the contribution of pheromone

level and the value of beta represents the contribution of heuristic function. The

higher the value of beta, the more is the in°uence of the distance in the selection

of the next node. The ¯gure below shows the e®ect of changing the values for

alpha and beta on the convergence of SAAS. The paths converge to the optimum

values with increasing beta value. The experiments have been conducted for

20� 20; 40� 40; 60� 60, and 80� 80 map sizes and the obtained results are

Table 4. Map 80� 80 results with di®erent values for alpha and beta using 50 iterations and 30 runs for

each experiment.

Beta

Alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 784.78 793.44 770.54 673.80 634.58 567.45 523.46 454.34 468.67 424.56

0.2 791.56 775.54 792.73 684.50 671.42 584.90 573.55 476.32 471.24 445.52
0.3 824.43 785.45 789.91 754.34 678.23 673.55 592.45 510.56 492.25 451.55

0.4 854.66 845.50 823.75 776.44 754.67 653.79 588.34 597.49 556.38 531.34

0.5 899.45 863.60 834.62 816.69 785.57 680.56 618.72 566.90 598.33 578.22

0.6 923.66 860.64 845.32 743.38 668.23 677.33 599.45 589.92 566.34 468.35
0.7 945.50 913.45 865.53 823.39 780.50 734.44 623.33 646.66 543.22 528.60

0.8 993.56 956.62 895.65 878.71 762.56 743.59 778.83 683.55 668.45 642.22

0.9 985.54 938.55 917.45 889.90 836.88 734.67 723.54 688.45 690.23 641.14
1 989.54 945.32 964.34 966.76 983.78 873.88 776.33 665.54 680.42 651.54

Min 784.78 775.54 770.54 673.80 634.58 567.71 523.45 454.34 468.67 424.56

Median 911.56 862.12 839.97 796.57 758.62 678.95 609.09 593.71 561.36 529.97
Average 899.27 867.81 849.98 800.79 755.64 692.44 639.80 587.97 573.55 536.31

Max 993.56 956.62 964.34 966.76 983.78 873.88 778.83 688.45 690.23 651.54
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consistent in all the maps. The performance of SAAS remains consistent with the

increase in map size.

The alpha value corresponds to the pheromone level and beta value corresponds

to the heuristic, i.e., distance measure from the start point to the goal point. The

results show the in°uence of beta on the cells traversed by guiding the ant agents

towards the goal. The more the value of beta, the better the results. Each experiment

has been conducted 30 times and the average value for each 30 runs is reported in the

above ¯gures. The starting point and the goal points have been selected as two

extreme positions on the map. The maps are generated randomly with a di®erent

number of mines, obstacle ratio and complexity. The color coding has been used to

distinguish mine, obstacle and empty cell that can be traversed. The feasible routes

are of the shortest distance while avoiding mines and obstacles.

The graphs in Figs. 2�5 show the cells traversed for each value of beta while

keeping the value of alpha constant. It is observed in each of the graphs below that

the route becomes shorter with an increasing value of beta. The results have been

compared with ideal solutions using the Manhattan distance as well as the Euclidean

distance for heuristic measure and the performance of the simulated ant agent sys-

tem is comparable with ideal solutions generated by the A* algorithm. The SAAS

has performed equally well as compared to the A* algorithm that is known to be the

best algorithm to ¯nd the shortest distance between two given points. The exper-

iments show the scalability and robustness of the simulated ant agent system by

using larger grid maps and its performance remains consistent throughout the

simulation run.

The results for simple to complex environments have shown the scalability of the

simulated ant agents. The convergence for each run depends on the values of alpha

and beta. The table list has been used to restrict the ant agents to new routes and

avoids loops. The SAAS without using a table list explores the same nodes again and

again and gets trapped in cycles. The table list has been maintained to enhance the

performance of SAAS by removing cycles and avoiding loops. The number of mines,

obstacles and complexity of the grid maps play an important role in the convergence

of the algorithm. The SAAS has been tested for static as well as dynamic goals and

shows promising results.

The SAAS has been applied to the dynamic environment for presenting a moving

target search. After the selection for the number of times to change the goal state, the

SAAS runs for tracing the ¯rst goal. After tracing the ¯rst goal with the shortest

route the goal changes randomly to a new random con¯guration. The next goal

appears within 10% of the area of the previous goal. The ant agents continue to

evaluate the probabilities of the new node selection and again run the roulette wheel.

SAAS is capable of acquiring the moving goal with the shortest route. ACO is

primarily an optimization technique and SAAS uses ACO for moving target search

in the dynamic environment. The results showed the robustness and scalability of the

SAAS in a dynamic environment.
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Fig. 2. 20� 20 map results with di®erent values for alpha and beta.
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Fig. 3. 40� 40 map results with di®erent values for alpha and beta.
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Fig. 4. 60� 60 map results with di®erent values for alpha and beta.
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Fig. 5. 80� 80 map results with di®erent values for alpha and beta.
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The experiments are conducted with 200 iterations, 5 dynamic targets generated

randomly on a 20� 20 grid size as shown in Table 5. The intervals are ¯xed to 40 for

each run. The distance of the new goal along with the distance from the previous goal

was taken into account for comparison. The path traversed by SAAS has been

compared with both the heuristics, i.e., Manhattan distance as well as the Euclidean

distance. Each experiment is conducted with di®erent obstacle ratios and map sizes.

The tracking of the moving target has been implemented using a simulated ant

agent system with di®erent parameters and for di®erent grid sizes. Each experiment

uses 5 di®erent goals generated at random locations with 200 iterations as one run.

Table 5 shows the results for each goal and compares the route generated by SAAS as

cells traversed with the Manhattan distance as well as with the Euclidean distance.

The experimentation uses a di®erent obstacle ratio, grid sizes and heuristic measure.

The simulation has been tested with di®erent options to generate new goals ran-

domly. In option 1, we select the number of times to change the goal. In option 2, we

provide the percentage of goal change during the complete run of iterations while the

third option provides the exact gap between iterations to change the goal.

Finally, the results obtained by SAAS in a static environment are compared with

the evolutionary technique using the genetic algorithm as shown in Table 6.

The paths are represented as chromosomes and a population size of 20 has been

used. The mutation and one point crossover have been used along with the ¯tness

function. The paths obtained have been compared with SAAS again with

20� 20; 40� 40; 60� 60, and 80� 80 maps and SAAS outperforms the evolutionary

algorithm. The convergence rate of genetic algorithm is found to be slow as compared

to the convergence rate of SAAS. The results shown in Table 6 clearly show the

di®erence in cells traversed by both the techniques. The smallest values for each map

have been used with the best values of alpha and beta for comparison. The number of

cells traversed for SAAS and GA has been taken as the average of 30 runs.

9. Optimization of Route Planning

A separate module for route optimization has been implemented to repair the gen-

erated routes. The number of v-edges are counted in each generated route and ¯xed

by taking the route with the same number of cells. It does not reduce the number of

cells traversed. It only increases the smoothness of the route. By replacing the v-edge

Table 6. SAAS and GA with average of 30 runs.

Map size Alpha Beta SAAS GA

20� 20 0.2 1 27.52 28.65

40� 40 0.1 1 54.57 66.78

60� 60 0.6 0.9 185.62 212.32

80� 80 0.1 1 424.56 753.56
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with the adjacent cell, the route becomes smooth and straight. The route optimizer

compares all the combinations of the v-edges along the route and removes the

v-edges by replacing them with diagonal cells along with keeping same cells and

distance.

The SAAS not only ¯nds the shortest distance route, it also optimizes the gen-

erated route as shown in Figs. 6 and 7. The route for each goal in the moving target

search has also been optimized by using the route optimizer. The routes generated by

Fig. 6. Shortest path without optimization.

Fig. 7. Shortest path with optimization.

476 K. Zafar et al.



the moving target search are available in the menu list with the number of v-edges in

each route. By applying the route optimizer, we repair each route and it provides

clear and smooth routes from the start state to each of the goals in the moving target

search. The diagonal movement generates v-edges that need to be repaired by using

the route optimizer. The smoothness of the routes depends on the number of v-edges

and clearness of the route depends on the obstacle avoidance and avoiding mines.

The clearness of the route has been incorporated in the ¯tness function but the

smoothness of the route requires a separate module. The main objective of this

module is to repair the path without altering the original route plans. For this

purpose, each generated route has been compared with the number of cells traversed

for each of the repaired path and the resultant selected route will have the same

number of cells and distance measure.

10. Conclusion

The simulated ant agent system has been used successfully for route planning and

optimization of routes in static and dynamic environments. The SAAS has been

tested with simple to complex environments and was found to be a robust, e±cient

and scalable online line route planning system. The route optimizer repairs the

generated routes while keeping the number of cells and distance same. The results for

the static environment for each map size are also compared with the evolutionary

technique and SAAS performed better then the genetic algorithm. For dynamic

environments, the SAAS has been compared with the moving target search algor-

ithm and proved to be an e±cient method for dealing with the dynamic environment.

The target goals for the SAAS have been changed and SAAS e®ectively tracked the

new goals. The distance of each new goal is compared with the A* algorithm and

found to be comparable. This paper implements SAAS for mine detection and

optimized online route planning for static as well as for the dynamic environment.

The consistent experimental results with di®erent size maps have shown the scal-

ability and robustness of the system for handling the dynamic environment. The

SAAS can be further tested for other constraint satisfaction and multi-objective

optimization problems in di®erent application areas.
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